CXFEL Project Update

William Graves

Biodesign Institute, Arizona State University

CXFEL Project – What is it?

A two-phase project to build a compact fully coherent x-ray laser

CXLS

Phase 1 Hard X-ray ICS Source

CXFEL

Phase 2 Soft X-ray Coherent Laser

CXFEL Labs

- 2 m thick slab separate from building
- Vibration rated VC-E (TEM quality)
- 0.25 0.5 C temperature stability
- Class 100k conditions throughout
- Low background B-fields
- Faraday cage RF room

The CXFEL Project includes two lab spaces for independent instruments

- Hard x-ray CXLS is commissioning; prototype of CXFEL technologies
- CXFEL under construction

CXFEL includes 80+ People in 16 Institutions

Biochem

Fromme, Petra (Science Dir) Botha, Sabine Brown, Michael (U AZ) Frank, Matthias (UC Davis) Grant, Tom (U. Buff.) Kirian, Rick Kuhl, Tonya (UC Davis) Lattman, Eaton Liu, Wei Ourmazd, Abbas (UW-Mil) Phillips, George (Rice) Ros, Alexandra Schmidt, Kevin Schmidt, Marius (UW-Mil) Schwander, Peter (UW-Mil) Weierstall, Uwe

Quantum Materials

Teitelbaum, Sam (QM lead) Kaindl, Robert (CXFEL Lab Dir) Tongay, Sefaatin Abbamonte, Peter (UIUC) Botana, Antia Comin, Riccardo (MIT) Chuang, Yi-De (LBL) Erten, Onur Gedik, Nuh (MIT) Mahmood, Fahad (UIUC) Mitrano, Matteo (Harvard) Reis, David (Stanford) Roy, Sujoy (LBL) Trigo, Mariano (SLAC)

Attosecond AMO

Sandhu, Arvinder (U AZ, AMO lead)

Berrah, Nora (UConn) Centurion, Martin (U Neb) Cryan, James (SLAC) DiMauro, Louis (OSU) Gessner, Oliver (LBL) Nelson, Keith (MIT) Rolles, Daniel (KSU) Rudenko, Artem (KSU) Weber, Thorsten (LBL)

Management

Winkel, David (Prog Mgr) Clark, Deanna Cottrell, Erica Reichanadter, Mark Staletovic, Anastasia

Instrument

Graves, William (Proj Dir) Karkare, Siddharth Li, Zenghai (SLAC) Loos, Henrik Malin, Lucas Messerschmidt, Marc

Loos, Henrik Malin, Lucas Messerschmidt, Marc Nanni, Emilio (SLAC) Qiang, Ji (LBL) Tantawi, Sami (SLAC) Thornton, Trevor

Engineering

Holl, Mark (Chief Eng) Brown, Paul (MIT) Cook, Brandon Gardeck, Alex Houkal, Jeff Jachim, Steven Liebich, Brett Ness, Richard Rednour, Steven Smith, Dean Vela, Juan

Education

Warble, Kelli (Lead) Babic, Gregory Boyd, Elena Brown, Taryn Dela Rosa, Trixia Dupre, Alan Eckrosh, Kevin Everett, Eric Eyler, Aaron Falconer, Jasmin Jaswal, Rejul Larsen, Rae Leonard, Nicholas Ma, Xinyi Martinez, Anastasia Ros, Elena Semaan, Antonella Stanton, Jade Tilton, Sean Valentin, Dariannette

Basic Layout for Inverse Compton Scattering (ICS)

ICS: replace undulator with a laser

CXLS Hard X-ray Design Parameters

Parameter	0.1%	5%	Units
	Bandwidth	Bandwidth	
Photon energy range	2 - 20	2 - 20	keV
Average flux	5x10 ⁹	1x10 ¹¹	photons/s
Average brilliance	$2x10^{12}$	5x10 ¹²	photons/(s .1% mm ² mrad ²)
Peak brilliance	3x10 ¹⁹	9x10 ¹⁸	photons/(s .1% mm ² mrad ²)
RMS horizontal size	3.0	3.0	microns
RMS vertical size	3.0	3.0	microns
RMS horizontal angle	4.0	4.0	mrad
RMS vertical angle	4.0	4.0	mrad
Photons per pulse	5x10 ⁶	1x10 ⁸	
RMS pulse length	<500	<500	fs
RMS timing jitter	<50	<50	fs
Repetition rate	1000	1000	Hz

CXLS Construction

RF and Timing Systems

Low Level RF

stitute

Arizona State University

Rapid and inexpensive prototyping of microwave circuits using modular waveguide components from **X-Microwave**. Much student involvement in design, test, commission.

Complete IQ Modulator. Similar boxes for downconverter, IQ demod, and machine protection

Variable Phase Shifter Power Divider (VPSPD)

- Divide or combine high power
- Move plungers together for phase shift
- Move plungers separately for power shift among output ports

Tibaray

Scandinova

K1

130 kV

98 A

2.5 us

1 kHz

Modulator Performance

14

Stellant (ex L-3) L-6145 6 MW, 1 us, 1 kHz 59 dB small signal gain

Biodesign

nstitute

Arizona State University

Klystron Performance

- V. Dolgashev (SLAC) RF design
- Mode converter with quad RF feeds
- 4.5 cells
- 9.3 GHz RF
- 3 MW peak power
- 4 MeV final energy
- 120 MV/m on cathode
- 1 kHz repetition rate
- Embedded in tape-wound solenoid

XFEL

kHz X-band Photoinjector

CXLS Photoinjector Commissioned

Commissioned to

- > 2.8 MW delivered
- > 117 MV/m gradient
- > 3.8 MeV energy
- > 1000 Hz rep rate
- > 700 ns pulses
- Conditioning time ~3 days
- Zero breakdowns/day

9.3 GHz Distributed-Coupling SW Linac

Tantawi and Li (SLAC and Tibaray)

- 20-cell structure 35 cm long
- 9.3 GHz
- 165 MOhm/m shunt impedance
- 170 ns fill time
- 3 mm apertures
- E_{surface} to E_{accel} = 4:1
- 1 kHz rep rate
- Distributed coupling to each cell
- Inexpensive

CXLS Linac Commissioning Results

Commissioned to

- > 27 MV/m gradient
- > 108 MV/m surface field
- > 1000 Hz rep rate
- > 700 ns RF pulse
- 2 MW delivered to each structure
- ~10 pC per 700 ns RF pulse dark current
- 29 MeV final beam energy (still tuning)
- RMS dE/E = 50-200 ppm

